Addendum #2

Beaver Dam Creek Trail & Pedestrian Bridge – Phase 1
Town of Damascus, Virginia
VDOT # EN99-205-101, PE101, C501
UPC #51977

Hill Studio Project # 0172

July 31, 2017

Contents:

Changes to Drawings and Project Manual/Specifications

Bid Form

Special Provision for Section 603 Seeding

Special Provision for Prefabricated Pedestrian Bridge Part ‘A’

Special Specifications for Prefabricated Bridge Part ‘B’
ADDENDUM #2

The following statements are clarifications or modifications to the Contract Drawings and Project Manual dated April 21, 2017. By inclusion in this Addendum, the following items shall become part of the Contract Documents and shall be considered part of the Work.

CHANGES TO THE DRAWINGS

1. Sheet L-3:
 - Detail 6, Compacted Gravel Trail Detail amended:
 - Remove “3” of #10s compacted to 90% of max density” from detail.
 - Trail will now be 4” VDOT #21B compacted to 90% of max density atop compact subbase to 95% of max density.
 - Remove Detail 8, Additive Bid Item 1: Asphalt/Trail Paving Detail from sheet.

2. Sheet L-4:
 - Detail 3, Typical Signage Post & Attachment amended:
 - Change all instances of “PT 6 x 6 post” to “PT 4 x 4 post”
 - Detail 5, Signage Types amended:
 - Amend General Note to read: “All signs shall use 4x4 pressure treated post”.
 - Signage types will also include standard sharp curve ahead sign as well as bridge weight limit sign (GVWR).

3. Sheet C-3:
 - Detail 1, Bridge Elevation – Upstream View amended:
 - Replace note:
 “Galvanized metal fabric 2” max openings in metal frame, submit shop drawings of design”
 - “1/2” square steel tubing @ 4” o.c. max. Weld to top & bottom chord of truss. Submit shop drawings.”
 - Add note to bridge approach panels:
 “Galvanized wire mesh 4” h x 2” w, 9 gauge @ both bridge approach ramps.”

CHANGES TO THE PROJECT MANUAL/SPECIFICATIONS
1. In all instances in which it occurs in the project manual, the bid due date shall be changed to Thursday, August 10, 2017 by 2:00pm.

2. Invitation for Bid:
 - Project duration changed to “210 days from Notice to Proceed”

3. Bid Form:
 - Revised bid form included in this addendum. Includes following changes:
 - Removed Item 8 Detectable warning paving, Item 13 Erosion control matting, and Item 14 Pavement line marking.
 - Added new Item 12 Swale 1A and Item 13 Swale 1B.
 - Revised quantities for Temp. silt fence (now Item 11), Sign with post (now Item 14), and permanent and flip-down Bollards (now Items 16 &17).

 - I. Description, Work Under This contract. Revise first paragraph as follows:
 “…including the construction of a gravel trail, raised section…”

5. Special Provision for Section 603 Seeding:
 - Revised provision included in this addendum. Revised seed mixture in Section (a) Seed Grass. This mixture supersedes that shown in Table 3.32-C of sheet ES2.2.

6. Special Provision for Wood Site Structures:
 - Quality Assurance. Add the following sentence as Item (f):
 “(f) All pressure-treated materials must come from a VDOT-approved treatment facility.”

6. Special Provision for Prefabricated Pedestrian Bridge Part ‘A’
 - Revised Part ‘A’ included in this addendum. Includes revisions to Scope of Work, Design Criteria, Submittals, and Products.

7. Special Specifications for Prefabricated Bridge Part ‘B’
 - Revised Part ‘A’ included in this addendum. Includes revisions to the following sections:
 - Section 3.1.2.1 Pedestrian Live Load
 - Section 3.1.3.3
 - Section 3.1.4.1 Horizontal Forces
 - Section 3.2.1.1 Vertical Deflection
 - Section 3.2.1.2 Horizontal Deflection
 - Section 3.2.2 Minimum Thickness of Metal
 - Section 4.3 Decking
 - Section 8.1.1
 - Section 14.0 Approval Checklist

END OF ADDENDUM #2

Prepared by Hill Studio
Damascus, Virginia - Beaver Dam Creek Trail & Bridge

31 July 2017

JOB DESIGNATION VDOT #s: EN99-205-101, PE101, C501 **UPC 51977**

<table>
<thead>
<tr>
<th>ITEM #</th>
<th>SPEC</th>
<th>ITEM DESCRIPTION</th>
<th>QTY</th>
<th>UNIT</th>
<th>UNIT PRICE</th>
<th>SUBTOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dollars</td>
<td>Cents</td>
</tr>
<tr>
<td>1</td>
<td>512/517/ATTD</td>
<td>Construction Stakes, lines, and grades, traffic control</td>
<td>1</td>
<td>ls</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td>513/ATTD</td>
<td>Mobilization</td>
<td>1</td>
<td>ls</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>3</td>
<td>301/508/ATTD</td>
<td>Existing paving area demolition, misc. poles, hauling & disposal, tree removal, clearing & grubbing, pruning</td>
<td>1</td>
<td>ls</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
<td>Manhole lid adjustment</td>
<td>1</td>
<td>ls</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td>303/TTD</td>
<td>Excavation & grading</td>
<td>743</td>
<td>cy</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>6</td>
<td>602</td>
<td>Topsoil</td>
<td>75</td>
<td>cy</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>7</td>
<td>309</td>
<td>Compacted gravel trail</td>
<td>1145</td>
<td>sy</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>8</td>
<td>205</td>
<td>Replace gravel on shoulder in parking lot</td>
<td>7</td>
<td>cy</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>9</td>
<td>ATTD</td>
<td>Shoulder stabilized turf 21A agg. 2' wide, 2" depth both sides</td>
<td>458</td>
<td>sy</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>10</td>
<td>ATTD</td>
<td>Tree protection fencing</td>
<td>136</td>
<td>If</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>11</td>
<td>303/ATTD</td>
<td>Temp. silt fence (type A (1)</td>
<td>1410</td>
<td>If</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>12</td>
<td>ATTD</td>
<td>Swale 1A (12' grass)</td>
<td>538</td>
<td>If</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>13</td>
<td>ATTD</td>
<td>Swale 1B (8' Class A1 riprap)</td>
<td>20</td>
<td>If</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>14</td>
<td>ATTD</td>
<td>Sign with post - regulatory signs per MUTCD for bicycle facilities</td>
<td>6</td>
<td>ea</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>15</td>
<td>221</td>
<td>Guardrail</td>
<td>260</td>
<td>If</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>16</td>
<td>ATTD</td>
<td>Bollard - permanent</td>
<td>4</td>
<td>ea</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>17</td>
<td>ATTD</td>
<td>Bollard - flip-down</td>
<td>2</td>
<td>ea</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>18</td>
<td>ATTD</td>
<td>Pre-engineered/pre-manufactured 14' wide x 90' length steel fabricated pedestrian footbridge with Southern Yellow Pine deck (includes delivery & installation)</td>
<td>1</td>
<td>ls</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>19</td>
<td>404/414</td>
<td>Bridge footings and abutments, including rip rap</td>
<td>1</td>
<td>ls</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>20</td>
<td>418</td>
<td>Elevated bridge approaches</td>
<td>1</td>
<td>ls</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>21</td>
<td>ATTD</td>
<td>Temporary & permanent seeding, mulching, fertilizer, lime</td>
<td>1220</td>
<td>sy</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

TOTAL $
SECTION 603 SEEDING of the Specifications is amended as follows:

Section 603.02(a): Materials

(a) **Seed Grass** shall be Rendition Tall Fescue (30%), Falcon Tall Fescue (35%), Reliant IV Hard Fescue (30%) and Annual Ryegrass (5%) or approved equals and shall conform to the requirements of Section 244.02(c). All percentages shown by weight.

All seed shall be free of noxious weed seeds, cleaned Grade A recent crop seed. Dealers guaranteed analysis and germination of 80%.

Kinds and varieties of seeds shall be delivered to the project in separate sacks and shall be mixed on the project or other approved locations under the observation of the Landscape Architect. Seeds shall comply with applicable state and federal seed laws and contract requirements. Seed shall not be used until approved by the Landscape Architect.

Seed shall be accompanied by an affidavit as depicted in Section 244.02(c) of the Specifications.

Seed shall be subject to inspection by Virginia State Seed Regulatory Inspectors of the Virginia Department of Agriculture and Consumer Services.

Seed tests shall have been completed within a 12-month period, exclusive of the calendar month in which the test was completed, prior to the beginning of the area schedule seeding periods during which seeds are to be used.

Seed shall not be, or have been, stored in an enclosure where herbicides, kerosene, or other material detrimental to seed germination is stored.

Deliver all materials to the site with their labels intact and legible. Store in weatherproof storage area, free from the affects of the weather. Should any material become wet or damaged, reject immediately and replace at no cost to the Owner.

The label from each sack of seed shall be signed by the Contractor and delivered to the Landscape Architect after each sack is completely used.

Section 603.03 (c) Applying Fertilizer is replaced by the following:

(c) Applying Fertilizer: When dry fertilizer is used, it shall be applied uniformly to the seeding areas at the time of seeding at the rate of 400 pounds of 15-30-15 fertilizer, or an equivalent quantity of 1-2-1 fertilizer, per acre. Fertilizer shall be distributed evenly, by mechanical spreader, over all areas to be seeded. Fertilizer shall be applied not more than one week prior to seeding. Fertilizer to be uniformly distributed in the top 2” to 4” inches of seed bed.
When applied in liquid form or mixed with water, fertilizer shall provide the same value of nutrients per acre as specified for dry fertilizer. Fertilizer applied in liquid form shall be agitated during application.

Section 603.03 (d) Applying Seed is replaced by the following:

(d) Applying Grass Seed: Special seeding shall consist of uniformly applying seed, fertilizer, and mulch on prepared areas. Seeds will be cast at a rate of 240 pounds/acre.

Overseeding shall consist of applying seed and fertilizer on areas prepared as directed by the Landscape Architect. Overseeding of bare areas larger than 6 inches in diameter will be required prior to final acceptance. This must be accomplished through mechanical means using a slit-seeder or a core aerator.

Seeding shall be done during favorable weather conditions and when wind is five miler per hour or less. Seeding will be between April 1 and May 31 or August 15 and October 15.

On the same day that the finish grading operations are performed (with no rain between operations) and after approved by the Landscape Architect the seed shall be applied at the rate specified above by means of an approved mechanical seed spreader which will provide a seeding depth of 1/8" to 1/4". Grass seed will be mechanically spread where possible. Seed in two directions perpendicular to each other, using half of the specified amount in each application. Seeding will be done using a Drill Seeder or a Brillion Seeder or approved equal.

Immediately after seeding, roll seeded areas sown with hopper type equipment with a hand roller weighing not less than 150 pounds nor more than 200 pounds. Care should be exercised to prevent foot prints or other disturbances to the finished surface. If cultipacker seeder is used, no additional rolling is required.

Section 603.03 (e) Applying Mulch is amended to replace the first sentence of the first paragraph with the following:

Mulch shall be applied immediately after completion of the seeding operation.

Section 603.03 - Procedures is amended to add the following:

(f) **Maintenance and Protection**: Maintenance shall include but not be limited to, the preparation and overseeding of any bare areas, proper watering, refilling of rain-washed gullies and rutted areas, mowing, Cultivation, weeding, disease and insect control, protective spraying, and any other procedures necessary to produce a normal healthy, and vigorous lawn. The maintenance period shall be until Owner's final acceptance of lawn.

At least three (3) mowings shall be completed in grass areas before the work will be accepted. Mower blades shall be set 2 1/2" to 3" high.

Watering shall be required for all areas which have been seeded except when natural precipitation has provided the necessary moisture as determined by the Landscape Architect. A minimum amount of rainfall would be two (2) one (1") inch rains per week.
(g) **Inspection:** Contractor will request four inspections during the course of work: 1) when final grade has been prepared; 2) after seeding and covering; 3) after the second mowing for substantial completion; and 4) for final acceptance when all punch list items are completed. Contractor shall maintain grass, and erosion control mix areas by watering, weeding, and overseeding as necessary until lawn area is established and accepted with Final Acceptance.

If grass areas are being readied for inspection, no individual area of any lawn shall have bare spots to cover more than 5% of the individual lawn areas.

Section 603.04 - Measurement and Payment is amended to replace the second Paragraph with the following:

<table>
<thead>
<tr>
<th>Pay Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Seeding including fertilizer, lime and seeding</td>
<td>S.Y.</td>
</tr>
<tr>
<td>Overseeding</td>
<td>Part of contract price</td>
</tr>
</tbody>
</table>
I. GENERAL

The contract documents apply to this section.

Reference specifications are referred to by abbreviation as follows:

A. Virginia Uniform Statewide Building Code = VUSBC
B. American Institute of Steel Construction = AISC
C. American Iron and Steel Institute = AISI
D. American Society for Testing and Materials = ASTM
E. American National Standards Institute = ANSI
F. Steel Joist Institute = SJI
G. American Welding Society = AWS
H. Steel Deck Institute = SDI
I. American Association of State Highway and Transportation Officials = AASHTO
J. Virginia Department of Transportation = VDOT

Related Work described elsewhere:

A. VDOT Section 217 – Hydraulic Cement Concrete.

Scope of Work: Provide a prefabricated pedestrian truss type bridge capable of being erected in the field with minimum field work. Bridge shall include structural frame, deck, safety fence, connections, and all other related items.

Design Criteria:

B. Design Loads and Deflections: The bridge shall be designed to support loads and limit deflections as follows:

1. Dead load = self weight of the structure
2. Live load = 90 psf
3. Wind load = 35 psf (horiz.), 15 psf (uplift)
4. Seismic load = per VUSBC
5. Temperature differential = 120 degrees F
6. Live load deflection \(= \frac{L}{360}\)
7. Horizontal deflection \(= \frac{l}{500}\)

C. Bridge appearance, shape, layout and dimensions shall conform to a truss type design as indicated on the drawings.

Quality Assurance: the design of the bridge and production of the required drawings shall be performed under the supervision of a professional engineer licensed in the Commonwealth of Virginia.

Submittals:

A. Submit shop drawings showing layout, dimensions, details, member sizes, connection, anchor bolt and bearing plate requirements, including a complete set of calculations. Shop drawings and calculations shall be sealed by a professional engineer licensed in the Commonwealth of Virginia.

B. Submit certification that all steel, including fasteners, comply with Made in America requirements.

C. Submit all applicable guarantees, warranties and certifications for bridge products to the owner.

D. All pressure-treated timbers shall be treated in a VDOT-approved facility.

Store bridge components on pallets or blocking above the ground and keep covered to protect from the weather.

Products:

A. All structural steel members and connections shall have a minimum thickness of \(\frac{1}{4}\) inch.

B. Bridge steel members and accessories shall be fabricated plates and shapes meeting the requirements of ASTM A709 grade 50W weathering steel. Tubular members shall be fabricated from materials meeting the requirements of ASTM A606 or A847 steel. Minimum yield strength shall be 50,000 psi.

C. Bolts shall be ASTM A307 bolts and anchor bolts and A325. High strength bolts for all other bolted connections.

D. Welds shall be made with E70 or E80 electrodes.

E. Safety fence shall be \(\frac{1}{2}\)” square steel tubing at maximum 4” o.c.

EXECUTION:

A. Finish for steel framing members shall be for weathering steel. Members shall be sand blasted in accordance with the steel structures painting council surface preparation specification No. 6 “Commercial Blast Cleaning”.

B. Fabrication and Quality Control:

1. Bridge fabricator shall be certified by the American Institute of Steel Construction to have the personnel, organization, experience, capability, and commitment to produce fabricated structural steel for conventional steel
structures and simple steel bridge structures with sophisticated painted endorsement as set forth in the AISC certification program.

2. Workmanship, fabrication, and shop connections shall be in accordance with American Association of State Highway and Transportation Officials specifications (AASHTO).

3. Welding operators shall be properly accredited experienced operators, each of whom shall submit satisfactory evidence of experience and skill in welding structural steel with the kind of welding to be used in the work, and who have demonstrated the ability to make uniform good welds meeting the size and type of weld required.

4. All welding shall utilize E70 or W80 series electrodes. The weld process used shall be Flux Core ARC Welding (FCAW) or shielded manual ARC welding (SMAW) per ANSI/AASHTO/AWS D1.5 “Bridge Welding Code”.

5. The connection of bridge end post to top chord should be a mitered joint with the exposed welds ground smooth.

C. Warranty: The manufacturer shall provide a warranty against defects in workmanship and materials for a period of 10 years (minimum).
1.0 GENERAL

1.1 Scope

These specifications are for a fully engineered clear span bridge of steel construction and shall be regarded as minimum standards for design and construction.

1.2 Qualified Suppliers

Each bidder is required to identify their intended bridge supplier as part of the bid submittal. Qualified suppliers must have at least 5 years experience fabricating these type structures.

The contractor must provide the following documentation, for any proposed supplier:

* Product Literature

* All documentation to insure the proposed substitution will be in compliance with these specifications. This shall include:

- Representative design calculations
- Representative drawings
- Splicing and erection procedures
- Warranty information
- Inspection and Maintenance procedures
- AISC Shop Certification
- Welder Qualifications

* Proposed suppliers must have at least five (5) years experience designing and fabricating these type structures and a minimum of five (5) successful bridge projects, of similar construction, each of which has been in service at least three (3) years. List the location, bridge size, owner, and a contact for reference for each project.

The engineer will evaluate and verify the accuracy of the submittal. If the engineer determines that the qualifying criteria have not been met, the contractor's proposed supplier shall be rejected. The engineer's ruling shall be final.
2.0 GENERAL FEATURES OF DESIGN

2.1 Span

Bridge span shall be 90'-0" (straight line dimension) and shall be as measured from each end of the bridge structure.

2.2 Width

Bridge width shall be 14'-0" and shall be as measured from the inside face of structural elements at deck level.

2.3 Bridge System Type

Bridge shall be designed as a Half-Through Pony System that has one (1) diagonal per panel and plumb end vertical members. Interior vertical members may be either plumb or perpendicular to the chord faces.

2.3.1 Bridge shall be designed utilizing an underhung floor beam (top of floor beam welded to the bottom of the bottom chord) or be designed utilizing an H-Section configuration where the floor beams are placed up inside the trusses and attached to the truss verticals.

2.3.2 The bridge manufacturer shall determine the distance from the top of the deck to the top and bottom truss members based upon structural and/or shipping requirements.

2.3.3 The top of the top chord shall not be less than 54 inches above the deck (measured from the high point of the riding surface) on bike path structures.

2.4 Member Components

All members of the vertical trusses (top and bottom chords, verticals, and diagonals) shall be fabricated from square and/or rectangular structural steel tubing. Other structural members and bracing shall be fabricated from structural steel shapes or square and rectangular structural steel tubing.

Unless the floor and fastenings are specifically designed to provide adequate lateral support to the top flange of open shape stringers (w-shapes or channels), a minimum of one stiffener shall be provided in each stringer at every floor beam location.

2.5 Attachments

2.5.1 Safety Rails

Vertical safety rails or pickets shall be placed on the structure to a minimum height of 4'-6" above the deck surface. The pickets shall be spaced so as to prevent a 4" sphere from passing through the truss. Pickets may be placed on the inside or outside of the structure at the bridge fabricators option. The top of the vertical pickets shall have a continuous cap angle or some other means to prevent bridge users from cutting or scraping their hands.

The picket safety system shall be designed for an infill loading of 200 pounds, applied horizontally at right angles, to a one square foot area at any point in the system.

2.6 Camber
The bridge shall have a vertical camber dimension at midspan equal to 100% of the full dead load deflection plus 1% of the full length of the bridge.

2.7 Elevation Difference
The bridge abutments shall be constructed at the same elevation on both ends of the bridge.

3.0. ENGINEERING

Structural design of the bridge structure(s) shall be performed by or under the direct supervision of a Licensed Professional Engineer and done in accordance with recognized engineering practices and principles.

3.1 Design Loads

In considering design and fabrication issues, this structure shall be assumed to be statically loaded. No dynamic analysis shall be required nor shall fabrication issues typically considered for dynamically loaded structures be considered for this bridge.

3.1.1 Dead Load

The bridge structure shall be designed considering its own dead load (superstructure and original decking) only. No additional dead load need be considered.

3.1.2 Uniform Live Load

3.1.2.1 Pedestrian Live Load

Main Members: Main supporting members, including girders, trusses and arches shall be designed for a pedestrian live load of 90 pounds per square foot of bridge walkway area. The pedestrian live load shall be applied to those areas of the walkway so as to produce maximum stress in the member being designed.

Secondary Members: Bridge decks and supporting floor systems, including secondary stringers, floor beams and their connections to main supporting members shall be designed for a live load of 90 pounds per square foot, with no reduction allowed.

3.1.3 Concentrated Loads

The bridge superstructure, floor system and decking shall be designed for each of the following point load conditions:

3.1.3.1 A concentrated load of 1000 pounds placed on any area 2.5 ft x 2.5 ft square.

3.1.3.2 A 1200 pound two wheel vehicle with a wheelbase and tire print area as shown in the following diagram:
3.1.3.3 A 10,000 pound four wheeled vehicle with the appropriate wheelbase, tire track and tire print area as shown in the following diagram: (See Table I for the values corresponding to the selected vehicle.)

![Diagram of vehicle on bridge with wheelbase and tire track specifications]

<table>
<thead>
<tr>
<th>Vehicle Weight</th>
<th>Axle and Wheel Spacings</th>
<th>Front Wheels</th>
<th>Rear Wheels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WB</td>
<td>T</td>
<td>P<sub>F</sub></td>
</tr>
<tr>
<td>4,000#</td>
<td>48"</td>
<td>32"</td>
<td>1,000#</td>
</tr>
<tr>
<td>6,000#</td>
<td>66"</td>
<td>48"</td>
<td>1,500#</td>
</tr>
<tr>
<td>8,000#</td>
<td>102"</td>
<td>60"</td>
<td>1,600#</td>
</tr>
<tr>
<td>10,000#</td>
<td>120"</td>
<td>72"</td>
<td>2,000#</td>
</tr>
</tbody>
</table>

(*C is the minimum dimension from center of wheel to the inside face of truss or curb.)

TABLE I

All of the concentrated or wheel loads shall be placed so as to produce the maximum stress in each member being analyzed. Critical stresses need be calculated assuming there is only one vehicle on the bridge at any given time. Assumptions that vehicles only travel down the center of the bridge or that the vehicle load is a uniform line load will not be allowed.

Each four wheeled vehicle load listed in Table I, up to and including the maximum weight vehicle selected, must be used in determining critical deck stresses. The wheel distribution for deck design shall be as specified in Section 4.3.1. Stringers shall be designed for the applied wheel loads assuming no lateral load distribution to adjacent stringers.

A vehicle impact allowance is not required.
3.1.4 Wind Load

3.1.4.1 Horizontal Forces

The bridge(s) shall be designed for a wind load of 35 pounds per square foot on the full vertical projected area of the bridge as if enclosed. The wind load shall be applied horizontally at right angles to the longitudinal axis of the structure.

The wind loading shall be considered both in the design of the lateral load bracing system and in the design of the truss vertical members, floor beams and their connections.

3.1.4.2 Overturning Forces

The effect of forces tending to overturn structures shall be calculated assuming that the wind direction is at right angles to the longitudinal axis of the structure. In addition, an upward force shall be applied at the windward quarter point of the transverse superstructure width. This force shall be 20 pounds per square foot of deck.

3.1.7 Top Chord/Railing Loads

The top chord, truss verticals, and floor beams shall be designed for lateral wind loads (per section 3.1.4.1) and for any loads required to provide top chord stability as outlined in Section 3.3.6; however, in no case shall the load be less than 50 pounds per lineal foot or a 200 pound point load, whichever produces greater stresses, applied in any direction at any point along the top chord or at the top of the safety system (42" or 54" above deck level), if higher than the top chord.

3.1.9 Load Combinations

The loads listed herein shall be considered to act in the following combinations, whichever produce the most unfavorable effects on the bridge superstructure or structural member concerned.

[DL=Dead Load; LL = Live Load; WL = Wind Load; VEH = Vehicle Load]

DL + LL
DL + VEH
DL + WL
DL + LL + WL
DL + VEH + .3WL

NOTE: Allowable stresses may be increased 1/3 above the values otherwise provided when produced by wind loading, acting alone or in combination with the design dead and live loads.

It shall be the responsibility of the foundation engineer to determine any additional loads (i.e. earth pressure, stream force on abutments, wind loads other than those applied perpendicular to the long axis of the bridge, etc.) and load combinations required for design of the abutments.

3.2 Design Limitations

3.2.1 Deflection

3.2.1.1 Vertical Deflection

The vertical deflection of the main trusses due to service pedestrian live load shall not
exceed L/360 of the span.

The vertical deflection of cantilever spans of the structure due to service pedestrian live load shall not exceed 1/300 of the cantilever arm length.

The deflection of the floor system members (floor beams and stringers) due to service pedestrian live load shall not exceed 1/360 of their respective spans.

The service pedestrian live load shall be 90 PSF.

Deflection limits due to occasional vehicular traffic shall not be considered.

3.2.1.2 Horizontal Deflection

The horizontal deflection of the structure due to lateral wind loads shall not exceed 1/500 of the span under an 85 MPH (35 PSF) wind load.

3.2.2 Minimum Thickness of Metal

The minimum thickness of all structural steel members shall be 1/4" nominal and be in accordance with the AISC Manual of Steel Constructions' "Standard Mill Practice Guidelines". For ASTM A500 and ASTM A847 tubing, the section properties used for design shall be per the Steel Tube Institute of North America's Hollow Structural Sections "Dimensions and Section Properties".

3.3 Governing Design Codes / References

Structural members shall be designed in accordance with recognized engineering practices and principles as follows:

3.3.1 Structural Steel Allowable Stresses

American Institute of Steel Construction (AISC).

Structural steel design shall be in accordance with those sections of the "Manual of Steel Construction: Allowable Stress Design" related to design requirements and allowable stresses.

3.3.2 Welded Tubular Connections

American National Standards Institute / American Welding Society (ANSI/AWS) and the Canadian Institute of Steel Construction (CISC).

All welded tubular connections shall be checked, when within applicable limits, for the limiting failure modes outlined in the ANSI/AWS D1.1 Structural Welding Code or in accordance with the "Design Guide for Hollow Structural Section Connections" as published by the Canadian Institute of Steel Construction (CISC).

When outside the “validity range” defined in these design guidelines, the following limit states or failure modes must be checked:

* Chord face plastification
* Punching shear (through main member face)
* Material failure
 - Tension failure of the web member
 - Local buckling of a compression web member
* Weld failure
 - Allowable stress based on “effective lengths”
 - “Ultimate” capacity
* Local buckling of a main member face
* Main member failure:
 - Web or sidewall yielding
 - Web or sidewall crippling
 - Web or sidewall buckling
 - Overall shear failure

All tubular joints shall be plain unstiffened joints (made without the use of reinforcing plates) except as follows:

* Floor beams hung beneath the lower chord of the structure may be constructed with or without stiffener (or gusset) plates, as required by design.
* Floor beams which frame directly into the truss verticals (H-Section bridges) may be designed with or without end stiffening plates as required by design.
* Where chords, end floor beams and in high profiles the top end struts weld to the end verticals, the end verticals (or connections) may require stiffening to transfer the forces from these members into the end vertical.
* Truss vertical to chord connections.

NOTE: The effects of fabrication tolerances shall be accounted for in the design of the structure. Special attention shall be given to the actual fit-up gap at welded truss joints.

3.3.4 Wood

American Institute of Timber Construction (AITC), the U.S. Forest Products Laboratory, and the American Forest & Paper Association (AF&PA).

Sawn lumber shall be designed in accordance with the ANSI/AF&PA NDS, “National Design Standard for Wood Construction”, as published by the American Forest & Paper Association or the “Timber Construction Manual” as published by the American Institute of Timber Construction (AITC). Design properties for naturally durable hardwoods shall be in accordance with “Tropical Timbers of the World”, as published by the U.S. Forest Products Laboratory.

3.3.6 Top Chord Stability

Structural Stability Research Council (SSRC), formerly Column Research Council.

The top chord shall be considered as a column with elastic lateral supports at the panel points. The critical buckling force of the column, so determined, shall exceed the maximum force from dead load and live load (uniform or vehicular) in any panel of the top chord by not less than 50 percent for parallel chord truss bridges or 100 percent for bowstring bridges. The design approach to prevent top chord buckling shall be as outlined by E.C. Holt's research work in conjunction with the Column Research Council on the stability of the top chord of a half-through truss. See Appendix A for the calculation of the spring constant C and the determination of an appropriate K factor for out-of-plane buckling.

In addition, for the dead load plus vehicle load combination, the spring constant “C” furnished by the transverse “U-Frames” shall not be less than “C” required as defined by:
\[C \text{ required} = \frac{1.46 \, P_c}{L} \]

where \(P_c \) is the maximum top chord compression due to dead load plus the vehicle load times the appropriate safety factor (1.5 for parallel chord truss bridges or 2.0 for bowstring bridges) and \(L \) is the length in inches of one truss panel or bay.

For uniformly loaded bridges, the vertical truss members, the floor beams and their connections (transverse frames) shall be proportioned to resist a lateral force of not less than \(1/100k \) times the top chord compressive load, but not less than \(.004 \) times that top chord load, applied at the top chord panel points of each truss. The top chord load is determined by using the larger top chord axial force in the members on either side of the “U-frame” being analyzed. For end frames, the same concept applies except the transverse force is \(1\% \) of the axial load in the end post member.

For bridges with vehicle loads, the lateral force applied at the top chord elevation for design of the transverse frames shall not be less than \(1\% \) of the top chord compression due to dead load plus any vehicle loading.

The bending forces in the transverse frames, as determined above, act in conjunction with all forces produced by the actual bridge loads as determined by an appropriate analysis which assumes that the floor beams are “fixed” to the trusses at each end.

NOTE: The effects of three dimensional loading (including “U-frame” requirements) shall be considered in the design of the structure. The “U-frame” forces shall be added to the forces derived from a three dimensional analysis of the bridge.

4.0 MATERIALS

4.1 Steel

4.1.1 Unpainted Weathering Steel

Bridges which are not to be painted shall be fabricated from high strength, low alloy, atmospheric corrosion resistant ASTM A847 cold-formed welded square and rectangular tubing and/or ASTM A588, or ASTM A242, ASTM A606 plate and structural steel shapes (\(F_y = 50,000 \) psi). The minimum corrosion index of atmospheric corrosion resistant steel, as determined in accordance with ASTM G101, shall be 6.0.

4.3 Decking

4.3.1 Treated Southern Yellow Pine Decking

All decking shall be full thickness planks unless approved otherwise.

4.3.1.1 Wood decking shall be No. 1 grade southern yellow pine. Wood decking shall be treated to a minimum of .40 pounds of CCA preservative per cubic ft of wood. All planks shall be partially air dried to a moisture content of 15% to 20%, and shall be supplied S4S (surfaced four sides), E4E (eased four edges), with the edges eased to a radius of 1/8". Provide moisture content test results.

Lumber shall be in sound condition, sound knots. Lumber shall be parallel cut without heart centers or sap wood.
Allowable Imperfections are:

All faces: Natural drying checks, Discoloration caused by weathering or chemical reaction, Bow or Spring which can be removed using normal installation methods and tools.

Imperfections Not Allowed:

Longitudinal heart cracks, Internal cracks, Firm or Soft sap wood, Splits, End splits, Ring shades, Fungi affects (blue to gray, brown to red, white to yellow, or incipient decay), Deformation (twisting or cupping) which cannot be removed using normal installation methods and tools.

Planks shall be supplied that meet or exceed the Static Coefficient of Friction for both Neolite and leather shoes in accordance with ASTM Test Method C1028-89.

<table>
<thead>
<tr>
<th>SHOE MATERIAL</th>
<th>FORCE IN POUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DRY</td>
</tr>
<tr>
<td>Neolite</td>
<td>0.73</td>
</tr>
<tr>
<td>Leather</td>
<td>0.55</td>
</tr>
</tbody>
</table>

4.3.1.2 Wood Decking Attachment

* At time of installation, planks are to be placed tight together with no gaps.

* Every plank must be attached with at least one fastener at each end.

* All fasteners to be zinc plated. Self-tapping screws or hex-head bolts, with a steel plank holddown, are to be used at the ends of planks. Self-tapping screws or carriage bolts are to be used as interior connection fasteners when required. Power actuated fasteners will not be allowed.

* Planks are to be drilled prior to installation of bolts and/or screws.

* In addition to at least one fastener at each end of every plank (typical for all installations), planks for bridges with widths of 72” to 143” shall be attached with a minimum of two fasteners at a location approximately near the center of the bridge width. Bridges wider than 143” are to have two fasteners located at a minimum of two interior stringer locations, approximately at the third points of the bridge width.

NOTE: Attachments at the ends of the planks may be modified as required when obstructions, such as interior safety system elements, prevent installation of the specified holddown system.

5.0 WELDING

5.1 Welding

Welding and weld procedure qualification tests shall conform to the provisions of ANSI/AWS D1.1 “Structural Welding Code”, 1996 Edition. Filler metal shall be in accordance with the applicable AWS Filler Metal Specification (i.e. AWS A 5.28 for the GMAW Process). For exposed, bare, unpainted applications of corrosion resistant steels (i.e. ASTM A588 and A847), the filler metal shall be in accordance with AWS D1.1, Section 3.7.3.

5.2 Welders
Welders shall be properly accredited operators, each of whom shall submit certification of satisfactorily passing AWS standard qualification tests for all positions with unlimited thickness of base metal, have a minimum of 6 months experience in welding tubular structures and have demonstrated the ability to make uniform sound welds of the type required.

6.0 SUBMITTALS

6.1 Submittal Drawings

Schematic drawings and diagrams shall be submitted to the customer for their review after receipt of order. Submittal drawings shall be unique drawings, prepared to illustrate the specific portion of the work to be done. All relative design information such as member sizes, bridge reactions, and general notes shall be clearly specified on the drawings. Drawings shall have cross referenced details and sheet numbers. All drawings shall be signed and sealed by a Professional Engineer who is licensed in accordance with Section 3.0.

6.2 Structural Calculations

Structural calculations for the bridge superstructure shall be submitted by the bridge manufacturer and reviewed by the approving engineer. All calculations shall be signed and sealed by a Professional Engineer who is licensed in accordance with Section 3.0. The calculations shall include all design information necessary to determine the structural adequacy of the bridge. The calculations shall include the following:

* All AISC allowable stress checks for axial, bending and shear forces in the critical member of each truss member type (i.e. top chord, bottom chord, floor beam, vertical, etc.).

* Checks for the critical connection failure modes for each truss member type (i.e. vertical, diagonal, floor beam, etc.). Special attention shall be given to all welded tube on tube connections (see section 3.3.2 for design check requirements).

* All bolted splice connections.

* Main truss deflection checks.

* U-Frame stiffness checks (used to determine K factors for out-of-plane buckling of the top chord) for all half through or "pony" truss bridges.

* Deck design.

NOTE: The analysis and design of triangulated truss bridges shall account for moments induced in members due to joint fixity where applicable. Moments due to both truss deflection and joint eccentricity must be considered.

6.3 Welder certifications in compliance with AWS standard qualification tests.

6.4 Welding procedures in compliance with Section 5.1.

7.0 FABRICATION

7.1 General Requirements
7.1.1 Drain Holes

When the collection of water inside a structural tube is a possibility, either during construction or during service, the tube shall be provided with a drain hole at its lowest point to let water out.

7.1.2 Welds

Special attention shall be given to developing sufficient weld throats on tubular members. Fillet weld details shall be in accordance with AWS D1.1, Section 3.9 (See AWS Figure 3.2). Unless determined otherwise by testing, the loss factor “Z” for heel welds shall be in accordance with AWS Table 2.8. Fillet welds which run onto the radius of a tube shall be built up to obtain the full throat thickness (See Figure 7.1). The maximum root openings of fillet welds shall not exceed 3/16” in conformance with AWS D1.1, Section 5.22. Weld size or effective throat dimensions shall be increased in accordance with this same section when applicable (i.e. fit-up gaps > 1/16”).

The fabricator shall have verified that the throat thickness of partial joint penetration groove welds (primarily matched edge welds or the flare-bevel-groove welds on underhung floor beams) shall be obtainable with their fit-up and weld procedures. Matched edge welds shall be “flushed” out when required to obtain the full throat or branch member wall thickness.

For full penetration butt welds of tubular members, the backing material shall be fabricated prior to installation in the tube so as to be continuous around the full tube perimeter, including corners. Backing may be of four types:

* A “box” welded up from four (4) plates.

* Two “channel” sections, bent to fit the inside radius of the tube, welded together with full penetration welds.

* A smaller tube section which slides inside the spliced tube.
A solid plate cut to fit the inside radius of the tube.

Corners of the “box” backing, made from four plates, shall be welded and ground to match the inside corner radii of the chords. The solid plate option shall require a weep hole either in the chord wall above the “high side” of the plate or in the plate itself. In all types of backing, the minimum fit-up tolerances for backing must be maintained at the corners of the tubes as well as across the “flats”.

7.2 Quality Certification

Bridge(s) shall be fabricated by a fabricator who is currently certified by the American Institute of Steel Construction to have the personnel, organization, experience, capability, and commitment to produce fabricated structural steel for the category “Major Steel Bridges” as set forth in the AISC Certification Program. Quality control shall be in accordance with procedures outlined for AISC certification. For painted structures, the fabricator must hold a "Sophisticated Paint Endorsement" as set forth in the AISC certification program. Furthermore, the bridge(s) shall be fabricated in a facility owned and/or leased by the corporate owner of the manufacturer, and fully dedicated to bridge manufacturing.

8.0 FINISHING

8.1 Blast Cleaning

8.1.1 Bare applications of enhanced corrosion resistant steels.

All Blast Cleaning shall be done in a dedicated OSHA approved indoor facility owned and operated by the bridge fabricator. Blast operations shall use Best Management Practices and exercise environmentally friendly blast media recovery systems.

To aid in providing a uniformly “weathered” appearance, all exposed surfaces of steel shall be blast cleaned in accordance with Steel Structures Painting Council Surface Preparation Specifications No. 6 Commercial Blast Cleaning, SSPC-SP6 latest edition.

Exposed surfaces of steel shall be defined as those surfaces seen from the deck and from outside of the structure. Stringers, floor beams, lower brace diagonals and the inside face of the truss below deck and bottom face of the bottom chord shall not be blasted.

9.0 DELIVERY AND ERECTION

Delivery is made to a location nearest the site which is easily accessible to normal over-the-road tractor/trailer equipment. All trucks delivering bridge materials will need to be unloaded at the time of arrival.

The manufacturer will provide detailed, written instruction in the proper lifting procedures and splicing procedures (if required). The method and sequence of erection shall be the responsibility of others.

The bridge manufacturer shall provide written inspection and maintenance procedures to be followed by the bridge owner.

10.0 BEARINGS

10.1 Bearing Devices
SPECIAL SPECIFICATIONS FOR PREFABRICATED BRIDGE
PART ‘B’

Bridge bearings shall consist of a steel setting or slide plate placed on the abutment or grout pad. The bridge bearing plate which is welded to the bridge structure shall bear on this setting plate. One end of the bridge will be fixed by fully tightening the nuts on the anchor bolts at that end. The opposite end will have finger tight only nuts to allow movement under thermal expansion or contraction.

The bridge bearings shall sit in a recessed pocket on the concrete abutment. Minimum 28-day strength for the abutment concrete shall be 3,000 PSI. The bearing seat shall be a minimum of 16" wide. The step height (from bottom of bearing to top-of-deck) shall be determined by the bridge manufacturer.

Bridges in excess of 100 feet in length or bridges with dead load reactions of 15,000 pounds or more (at each bearing location) shall have teflon on teflon or stainless steel on teflon slide bearings placed between the bridge bearing plate and the setting plate. The top slide plate shall be large enough to cover the lower teflon slide surface at both temperature extremes.

11.0 FOUNDATIONS

Unless specified otherwise, the bridge manufacturer shall determine the number, diameter, minimum grade and finish of all anchor bolts. The anchor bolts shall be designed to resist all horizontal and uplift forces to be transferred by the superstructure to the supporting foundations. Engineering design of the bridge supporting foundations (abutment, pier, bracket and/or footings), including design of anchor bolt embedments, shall be the responsibility of the foundation engineer. The contractor shall provide all materials for (including anchor bolts) and construction of the bridge supporting foundations. The contractor shall install the anchor bolts in accordance with the manufacturer's anchor bolt spacing dimensions.

Information as to bridge support reactions and anchor bolt locations will be furnished by the bridge manufacturer after receipt of order and after the bridge design is complete.

12.0 PAYMENT

A partial payment or "deposit" for the prefabricated bridge shall be made upon order and storage as required by the terms of the manufacturer.

13.0 WARRANTY

The bridge manufacturer shall warrant their steel structure(s) to be free of design, material and workmanship defects for a minimum period of ten years from the date of delivery. Naturally durable hardwood decking and hardwood attachments shall carry a ten-year warranty against rot, termite damage, or fungal decay. Other types of wood are excepted under this warranty.

This warranty shall not cover defects in the bridge caused by abuse, misuse, overloading, accident, improper maintenance, alteration or any other cause not the result of defective materials or workmanship. This warranty shall be void unless owner’s records can be supplied which shall indicate compliance with the minimum guidelines specified in the inspection and maintenance procedures.

Repair or replacement shall be the exclusive remedy for defects under this warranty. The bridge manufacturer shall not be liable for any consequential or incidental damages for breach of any express or implied warranty on their structures.
SPECIAL SPECIFICATIONS FOR PREFABRICATED BRIDGE

14.0 APPROVAL CHECKLIST

The following checklist will be used in the evaluation of all submittals to assure compliance with the Special Specifications for Prefabricated Bridge. This checklist is considered the minimum acceptable requirements for compliance with these specifications. Any deviations from this checklist shall be considered grounds for rejection of the submittal. Any costs associated with delays caused by the rejection of the submittal, due to non-compliance with this checklist, shall be fully borne by the contractor and bridge supplier.

SUBMITTAL DRAWINGS

Data Required to be Shown:

- Bridge Elevation
- Bridge Cross Section
- All Member Sizes
- All Vertical Truss Members are Square or Rectangular Tubing
- Bridge Reactions
- General Notes Indicating AISC Stress Conformance, Material Specifications to be Followed, Design Live Load, Design Vehicle Load (If Applicable), Design Wind Load, Other Specified Design Loads, Main Member Buckling Failure Checks, Main Member Shear Failure Checks, Main Member Yielding Failure Checks, Main Member Crippling Failure Checks, Weld Failure Checks (Ultimate), Local Buckling of the Main Member Face Checks, All Vertical Member Checks (if applicable), All Bolted Splice Checks (if applicable), Main Truss Deflection Checks, Decking Material Checks, “U-Frame” Stiffness Checks (if applicable), Interior and End Portal Design Checks (if applicable), Main Frame Deflection Checks, Design Wind Load, Determination of Top Chord K Factor Based on “U-Frame” Stiffness (if applicable), Consideration of Individual Member Moments Due to Truss Deflection, Joint Fixity and Joint Eccentricity
- Other Specified Design Loads
- Welding Process
- Blast Cleaning
- Paint System to be Used (If Applicable)
- Paint Color Chart (If Applicable)
- Detailed Bolted Splices (If Applicable)
- Bolted Splice Location (If applicable)
- Signature and Seal of Professional Engineer, licensed in Accordance with Section 3.0

FABRICATION SUBMITTALS

Data Required to be Shown:

- Written Installation Instructions
- Written Splicing Instructions
- Written Maintenance & Inspection Instructions
- Welder Certifications
- Welding Procedures
- Material Certifications (if applicable)
- Structural Steel (if applicable)
- Decking (if applicable)
- Structural Bolts (if applicable)
- Quality Control Section of AISC Certification Manual (if applicable)
- Painter Certifications (if applicable)

DESIGN CALCULATIONS

Data Required to be Shown:

- Data Input for 3-D Analysis of Bridge
- Joint Coordinates & Member Incidences
- Joint and Member Loads
- Member Properties
- Load Combinations
- Structural Steel (if applicable)
- Decking (if applicable)
- Structural Bolts (if applicable)
- Quality Control Section of AISC Certification Manual (if applicable)
- Painter Certifications (if applicable)
SPECIAL SPECIFICATIONS FOR PREFABRICATED BRIDGE

- “Made in America” certification for steel and fasteners.
- VDOT approved wood treatment facility
- AISC Member Stress Checks for Each Member Type
- Weld Testing Reports (if applicable)
- Critical Connection Failure Mode Checks For Each Member Type
- Chord Face Plastification Checks
- Punching Shear Checks
- Material Failure Checks (Truss Webs)
- Weld Failure Checks (Effective Length)

NOTE: These items are required to be submitted along with Submittal Drawings and Design Calculations. Those Fabrication Submittal Items not marked are to be submitted prior to shipment of the bridge.
Appendix A

1/K FOR VARIOUS VALUES OF CL/Pc and n

<table>
<thead>
<tr>
<th>1/K</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>3.686</td>
<td>3.616</td>
<td>3.714</td>
<td>3.754</td>
<td>3.785</td>
<td>3.809</td>
<td></td>
</tr>
<tr>
<td>0.980</td>
<td>2.384</td>
<td>2.944</td>
<td>2.806</td>
<td>2.787</td>
<td>2.771</td>
<td>2.774</td>
<td></td>
</tr>
<tr>
<td>0.960</td>
<td>3.000</td>
<td>2.665</td>
<td>2.542</td>
<td>2.456</td>
<td>2.454</td>
<td>2.479</td>
<td></td>
</tr>
<tr>
<td>0.950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.940</td>
<td>2.754</td>
<td></td>
<td>2.303</td>
<td>2.252</td>
<td>2.254</td>
<td>2.282</td>
<td></td>
</tr>
<tr>
<td>0.920</td>
<td>2.643</td>
<td></td>
<td>2.146</td>
<td>2.094</td>
<td>2.101</td>
<td>2.121</td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>2.593</td>
<td>2.626</td>
<td>2.045</td>
<td>1.951</td>
<td>1.968</td>
<td>1.981</td>
<td></td>
</tr>
<tr>
<td>0.880</td>
<td></td>
<td>2.460</td>
<td>2.013</td>
<td>1.794</td>
<td>1.709</td>
<td>1.681</td>
<td>1.694</td>
</tr>
<tr>
<td>0.800</td>
<td>2.961</td>
<td>2.313</td>
<td>1.889</td>
<td>1.629</td>
<td>1.480</td>
<td>1.456</td>
<td>1.465</td>
</tr>
<tr>
<td>0.750</td>
<td>2.147</td>
<td>1.750</td>
<td>1.501</td>
<td>1.344</td>
<td>1.273</td>
<td>1.262</td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>4.481</td>
<td>1.955</td>
<td>1.595</td>
<td>1.359</td>
<td>1.200</td>
<td>1.111</td>
<td>1.088</td>
</tr>
<tr>
<td>0.650</td>
<td>1.739</td>
<td>1.442</td>
<td>1.236</td>
<td>1.087</td>
<td>0.988</td>
<td>0.940</td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>2.035</td>
<td>1.439</td>
<td>1.338</td>
<td>1.133</td>
<td>0.985</td>
<td>0.878</td>
<td>0.808</td>
</tr>
<tr>
<td>0.550</td>
<td>1.517</td>
<td>1.211</td>
<td>1.007</td>
<td>0.860</td>
<td>0.768</td>
<td>0.708</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>1.750</td>
<td>1.362</td>
<td>1.047</td>
<td>0.847</td>
<td>0.750</td>
<td>0.668</td>
<td>0.600</td>
</tr>
<tr>
<td>0.450</td>
<td>1.158</td>
<td>0.829</td>
<td>0.714</td>
<td>0.624</td>
<td>0.537</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>1.232</td>
<td>0.886</td>
<td>0.627</td>
<td>0.555</td>
<td>0.454</td>
<td>0.428</td>
<td>0.383</td>
</tr>
</tbody>
</table>

Where:

\[
C = \frac{E}{h^2 \left[h/3I_v + b/2I_b \right]}
\]

- \(L \) = Length in inches of one truss panel
- \(P_c \) = Buckling Load (= Top Chord Compression x F.S.)
- \(n \) = Number of Panels